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Abstract—Human motion indexing and retrieval is important for animators due to the need to search the databases for motions which

can suitably be blended and concatenated. Most of the previous researches of human motion indexing and retrieval compute the

Euclidean distance of joint angles or joint positions. Such approaches are difficult to apply for cases in which multiple characters are

closely interacting with each other, as the relationships of the characters are not encoded in the representation. In this research, we

propose a topology-based approach to index the motions of two human characters in close contact. We compute and encode how the

two bodies are tangled based on the concept of rational tangles. The encoded relationships, which we define as TangleList, are used to

determine the similarity of the pairs of postures. Using our method, we can index and retrieve motions such as one person piggy

backing another, one person assisting another in walking, and two persons dancing/wrestling. Our method is useful to manage a

motion database of multiple characters. We can also produce motion graph structures of two characters closely interacting with each

other by interpolating and concatenating topologically similar postures and motion clips, which are applicable to 3D computer games

and computer animation.

Index Terms—Content-based retrieval, character animation, human motion.

Ç

1 INTRODUCTION

NOWADAYS, the use of motion capture data is common in
3D computer games and animation. Therefore, there is

a high demand for indexing and retrieving motion data
efficiently so that animators can easily search for the motion
they want in the database. Several methods have been
proposed to search human motion data in the database by
giving an example query. Such methods are targeted for
motions of single characters, and most of them evaluate the
similarities of the motions by comparing low-level attri-
butes such as the joint angles or joint positions.

On the other hand, in computer animations and games,
there are many scenes where multiple characters are
densely interacting with each other. For example, in
wrestling, the arms and legs of each character are tangled
with those of the others in a complex way. To index such
motions, we cannot simply apply the same methods as for
single characters as the correlations between the characters
will be ignored. Suppose one character is holding the neck
of another character, as shown in Fig. 1. If we want to search
and blend motions to these postures, we need to take into
account the fact that the right arm of the black character is
tangled with the neck of the gray character. Only motions
that keep such relationships can be blended to the
characters’ motions. As previous indexing methods of
human motions do not take into account the topological
relationships of body segments, they will not work well for
dense interactions of multiple characters.

In this paper, we use tangles [1] made between the
segments to index the pair of postures of two characters. As
there can be several tangles made by different segments of
the body, we compose a data structure called a TangleList to
represent the topological relationship of the two bodies.
Given two TangleLists, we can compute their distance to
evaluate the similarity of the set of postures. Then, it is
possible to categorize the relationships of two characters
and give an example relationship as a query to search for
similar pairs of postures, as shown in Fig. 2. It is also
possible to avoid interpolating/blending topologically
dissimilar postures/motions which can cause body inter-
penetrations. As a result, our method is also useful for
applications such as motion synthesis.

The paper is organized as follows: In Section 2, we
discuss the related work. Section 3 explains how to extend
the concept of tangles in knot theory to index, encode, and
compare the relationships between two characters. In
Section 4, experiments are conducted to show the perfor-
mance of using the topological relationship for content-
based retrieval and human animation. In Section 5, we
discuss the possibilities of applying the topological relation-
ship and conclude the work in this paper.

2 RELATED WORK

Searching for similar postures or motions of humans is
important for computer animation, as animators need to
produce new motions by concatenating/interpolating dif-
ferent motions. In Motion Graphs [2], [3], [4], similar
postures are searched and connected by edges to compose
a graph structure. By traversing along the Motion Graph, it
is possible to create a continuous animation of characters. In
Motion Graphs, the postures are compared by calculating
the difference of the joint angles/angular velocities [3] or
the 3D locations/velocities of the joints [2], [4].
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Content-based retrieval of human motions is used to
search for similar motions that can be blended to synthesize
new motions. Arikan et al. [5] propose using an SVM to
classify the movements of characters. Feng et al. [6] propose
building a hierarchical tree structure to quickly retrieve
similar motions from the database. In order to consider
temporal variations, dynamic time warping (DTW) is used
to synchronize the timings of actions [7], [8]. Keogh et al. [9]
present scaling which is more efficient than DTW and is
more suitable for indexing large human motion databases.
We categorize these methods as numerical methods, as the
motions are classified based on distance of low-level
attributes, such as the joint angles or 3D positions.

In many cases, when retrieving the motion data, users
are more interested in the semantic similarities rather than
the numerical closeness of low-level attributes. Müller et al.
[10], [11] propose a semantic approach based on the
correlation of four joint positions: a virtual plane is defined
by the first three joint positions, and whether the last joint is
in front or back of the plane is used as an operator to index
the posture. They select a number of combinations of joints
which are effective to distinguish human motions and use
them to index and retrieve human motions. Such an
approach is more robust in retrieving semantically similar
motions, as the results are not affected by deviation of low-
level attributes. However, they do not consider geometric
features that are suitable for multiple characters.

In order to introduce a new systematic way to evaluate
the relationships of different characters, topology is the key
tool. Topology has been an important tool for reconstruc-
tion of 3D surfaces from cross-sectional images [12], [13],
[14], shape modeling [15], image analysis [16], volume data
analysis [17], and content-based retrieval of 3D objects [18].
Shinagawa et al. [12], [13], [14] extract the topological
structure called a Reeb graph [19] from the cross-sectional
images of biological tissues and use it to reproduce its 3D
surface. Takahashi et al. [15] extend that idea to a 3D
modeling system which lets the user specify the topological
structure of the model. The users need to model only a
portion of the surface and then the system estimates the rest
of the shape based on the topological structure. In topology-
matching [18], the Reeb graph based on the geodesic
distances over the surface is composed, and the graph
structures are matched to examine the similarity of the
objects. The advantage of using topology for content-based
retrieval is that it is invariant against orientation and local
deformation. Topological information is also used for

morphing 3D objects of different topological structures
[20], [21]. In such cases, both the topological and geometric
structures are used to interpolate the shape of the objects.
However, none of these consider the topological relation-
ships of multiple objects.

Ideas to handle the topological relationships can be
found in knot theory; many invariants, such as crossing
numbers and polynomials [22], are proposed to distinguish
knots. In knot theory, there is a concept called tangles [1],
which represents the relationship of two separate strings.
Tangles are applied to describe the role of enzymes that
change the topological structure of DNAs [23]. Ho and
Komura [24], [25] use the concept of tangles for character
animation: they detect tangles made between the two
bodies by using Gauss Linking Integrals and apply them
for character animation [24] and path planning [25]. Some
basic ideas of their work, such as detecting the minimal
tangles, are used in this paper.

In this research, we use the concept of rational tangles
[1] to distinguish relationships of two characters. We
extend the concept of tangles so that we can apply it not
only to two-end strings, but also to tree structures such as
humans, that are composed of multiple nodes and edges.
Using this extended concept, we use the invariant of
rational tangles for indexing and retrieving human motion
data from the database.

3 REPRESENTATION AND COMPARISON

OF TOPOLOGICAL RELATIONSHIPS

In this section, the methodology to compute and encode
the way two human bodies are tangled with each other
is explained.

The overview of the methodology is shown in Fig. 3. We
first compute all the tangles made between the paths
connecting the end effectors. The tangle information is then
encoded into a data structure called a TangleList. We
calculate the similarities between two pairs of postures by
matching the tangles in the two TangleLists.

The rest of this section proceeds as follows: We first
explain the concept of 2-tangles, which is the minimal unit
for representing the topological relationship, and then
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Fig. 1. The topological relationship where the arm is tangled with the

neck is the same for the above two postures, although the kinematic

joint angles or 3D location of the joints are different.

Fig. 2. The human motion retrieval based on topological relationships:

three pairs of postures similar to the query postures are returned. The

values on the bottom are the normalized similarity of the output posture

with the query posture.
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explain how to represent the relationship of body structures
by a set of 2-tangles. Next, we explain how to compute and
encode the tangle information from the 3D postures of the
characters. Finally, we explain how to compare two sets of

postures based on the encoded data.

3.1 2-Tangles

We use 2-tangles [1] as the minimal unit to represent the
topological relationship of two characters. A 2-tangle is
defined as a pair of strings whose end points are fixed in
Euclidean 3D space. Examples of 2-tangles are shown in

Figs. 4a, 4b, and 4c. Most of the tangles of the bodies can be
represented by 2-tangles, or a set of 2-tangles.

2-Tangles can be categorized into rational tangles
(Fig. 4a), self-knotted tangles (Fig. 4b), and prime tangles
(Fig. 4c). The rational tangles are a group of tangles which
can be composed of successive twists of two parallel strings

around the vertical and horizontal axes. In this research, we
limit the tangles made between the paths to rational tangles,
because 1) they are the most basic tangles which can
represent most of the postures of humans tangled with

each other and 2) there is an invariant that can be used to
distinguish every tangle from the others.

3.2 Tangles of Tree Structures

As we need to handle human characters, we have to

compute the tangles made between tree structures. Trees
are composed of edges and nodes, and therefore, tangles
made between them will be more complex than those
between single strings.

The tangles between trees can be examined by checking
all the tangles made between the paths connecting the end

effectors of the trees. The graph structure that is used to
represent the human body in this research is shown in
Fig. 5. There are 10 paths connecting the end effectors of
this graph.

The topological relationships of two tree structures are
considered equivalent when the 2-tangles of all the paths
are equivalent. An example of a set of postures where the
two characters are tangled is shown in Fig. 6a. In this case,
path 5 of the gray character is tangled with paths 3, 4, 6, 7,
8, 9 of the black character. The advantage of representing
the tangles of tree structures by the combination of all the
2-tangles is that although the tangle crosses a node while
the characters are moving, as shown in Fig. 6b, the
relationship is acknowledged unchanged. This kind of
translation of tangles is called Reidemeister moves in knot
theory. It is important that the state of the tangle does not
change under Reidemeister moves.
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Fig. 4. Examples of 2-tangles: (a) rational, (b) self-knotted, and (c) prime

tangles. The rational tangles can be composed by successive twists of

two ends.

Fig. 5. The tree structure of the graph that is used to represent the body

structure. There are 10 paths that connect the end effectors.

Fig. 3. The process of encoding the tangled postures. For every path connecting the end effectors, we 1) compute and 2) encode the tangle

information, and 3) compare the results with those from other postures.

Fig. 6. The homeomorphic Reidemeister moves after which the

relationship must be considered equivalent.
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3.3 Detecting the Tangles

In this subsection, we explain how to find out the tangles
directly from the 3D position/orientation of the body
segments by computing the Gauss Linking Integrals.

In knot theory, it is always assumed that the tangles or
knots are projected onto a 2D plane. As knots or links are
closed curves, the projection plane does not affect invar-
iants such as the minimum crossing numbers (Fig. 7a).
However, in case of tangles, the projection plane affects the
number of crossings (Fig. 7b), and as a result, we cannot
use the crossing numbers as the features. It is also difficult
to define a plane to project the tangles onto, as the bodies
are always moving around and their orientations are
changing from time to time. Here we explain a method to
compute the tangles directly from the 3D location/orienta-
tion of the bodies.

3.3.1 Gauss Linking Integrals

We use Gauss Linking Integral (GLI), which is the average
number of crossings when viewing the tangle from all
directions divided by two. In the case when the absolute
value of the GLI is over 1 (Fig. 8a), the two curves are
twisting around each other once. If it is over 0.5 (Fig. 8b), the
two curves are tangled, which means that they cannot be
separated into two by a plane between them without
cutting either of them. And if it is less than 0.5 (Fig. 8c), the
two curves are untangled. The GLI of two directed curves �1

and �2 can be computed by

GLIð�1; �2Þ ¼
1

4�

Z
�1

Z
�2

d�1 � d�2 � ð�1 � �2Þ
k�1 � �2k3

; ð1Þ

where � and � are cross product and dot product operators,
respectively. Since we are only interested in knowing
whether the bodies are tangled or not, we compute the
GLIs for the body segments, and if their absolute values are
over 0.5, we tag them as tangled and use these results when

comparing the postures. The details are explained in the
following subsections.

The GLI satisfies commutativity. It also has a distributive
property over the operation of concatenating two strands.
Mathematically, these can be written as

GLIðL1; L3Þ ¼ GLIðL3; L1Þ; ð2Þ

GLIðconðL1; L2Þ; L3Þ ¼ GLIðL1; L3Þ þGLIðL2; L3Þ; ð3Þ

where L1; L2, and L3 represent strands, and conðÞ is an
operator connecting two strands (see Fig. 9). These are
convenient features when computing all the tangles made
between the segments.

3.3.2 Efficient Detection of Tangles by the GLI Matrix

This process is similar to what has been done in the work of
Ho and Komura [24], [25]; however, instead of conducting
double integrations of Gauss Integrals for every path as
stated in (1), we do this more efficiently by representing the
segments connecting the joints by line segments and
calculating the GLI between the line segments using the
analytical solution [26]. The readers are referred to the
Appendix for the details. As a result, the GLI between
arbitrary local paths can be simply calculated by summing
the GLI of segment pairs.

Now we explain how to find all the tangles based on the
GLI. In the rest of the paper, we will call the entire tangle
composed of the whole strands as tangles and their subsets
composed of part of the strands as subtangles. We will
detect the rational tangles made between two serial links of
rigid segments. This starts by computing all the subtangles
made between the two links. Suppose the two links A and B
are composed of m and n segments, respectively. An m� n
matrix that contains the GLI between every pair of body
segments is composed. Let us define this matrix as the GLI
matrix. First, we find out all the minimal subtangles, for
which the absolute sum is larger than 0.5 by scanning all the
submatrices in the GLI matrix.

An example of a 2-tangle and its GLI matrix is shown in
Fig. 10. Five subtangles are found and the corresponding
submatrices are surrounded by the rectangles.

3.4 Encoding the Tangles

Here we explain a method for encoding the tangles into a
structure called a TangleList, which is equivalent to the
continued fraction of rational tangles. The continued
fraction is a complete invariant that can distinguish each
kind of rational tangles from others [1]. It is the rational
number that can be calculated by

an þ
1

an�1 þ 1
an�2þ���þ 1

a1

; ð4Þ
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Fig. 8. The GLI of two directed curves when (a) one strand is
surrounding the other, (b) singly tangled, and (c) untangled (c).

Fig. 9. GLI satisfies the commutative rule.

Fig. 7. The projection plane does not affect the minimum crossing
numbers for links (a) but does for tangles (b).
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where ða1; . . . ; anÞ are integers that represent the numbers of
successive horizontal and vertical twists of the two strands.
An example of a rational tangle and its corresponding
continued fraction is shown in Fig. 11. As continued fraction
requires the tangle to be projected onto a plane, we propose
to use a data structure called TangleList, which is
equivalent to the continued fraction but does not require
the tangle to be projected onto a plane.

Let us define the rational tangle to be encoded by T .
Rational tangles are composed of successive, integer
numbers of horizontal twists (Fig. 12a), and vertical twists
(Fig. 12b). The composition of the TangleList proceeds by
untangling T , which is done by successive twists of the two
ends, as shown in Fig. 13. In our case, we do not necessarily
twist for an integer number of times, as the tangles are
defined in the 3D space based on the location of the joint
positions. Instead, we keep the GLI value of each twist. On
the other hand, it is also difficult to define any absolute
standards for vertical/horizontal twists as the bodies can be
oriented in arbitrary ways. Therefore, we assume that the
initial twist is a horizontal twist.

In order to correctly untwist tangle T , we need to define
the type of the subtangles. Let us assume that a tangle T is
composed of two strands a and b, and the directions are
defined in both strands. The subtangles Si composing T

can be categorized into four types: those composed by

strand a and a (type AA), strand b and b (type BB), and by
strand a and b in the forward direction (type AB), and in
the opposite direction (type BA). The four types are shown
in Fig. 14.

Now we can define three attributes for each subtangle:
the type, GLI, and twist. The type is either of BB, AB, BA,
AA, the GLI keeps the GLI value of the subtangle, and twist
tells whether the subtangle is either made by a “vertical”
(V) twist or an “horizontal” (H) twist.

The untwisting can be done systematically by the
following process. First, we put all the subtangles into a
group defined by G. We start by finding the subtangle to be
untwisted in G. The subtangle S that satisfies the following
conditions is selected:

1. Two end points of S, defined here by e1 and e2, are
also the end points of T (Fig. 15a), which means
there is no other subtangle between the end points of
S and those of T .

2. S can be untangled by twisting e1 and e2.

The second condition can be judged by checking
whether 1) the closest minimal tangle from e1 and that
from e2 are the same (Fig. 15b) (remember the minimal
tangles are those whose GLI values are above 0.5, which
are found using the method explained in Section 3.3.2)
and 2) e1 and e2 are not connected in this minimal tangle
(Fig. 15c).

Once the subtangle S that satisfies these conditions is
found, we virtually untangle this subtangle by removing it
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Fig. 11. An example of a rational tangle and its corresponding continued

fraction.

Fig. 12. Examples of (a) horizontal tangles and (b) vertical tangles.

Fig. 13. An example of encoding a rational tangle while untangling it. The
tangle is encoded as “two vertical twists (2V) and one horizontal twist
(1H).”

Fig. 14. The four types of subtangles composing the tangle made by two
strands a and b. We assume that the directions of the strands are
defined. These are composed of a and b ((a) and (b)), only by a (c), and
only by b (d).

Fig. 10. A 2-tangle and its GLI matrix. The five subtangles and their

corresponding submatrices are visualized.

Fig. 15. The conditions for selecting the subtangle S to be untangled.

(a) The two ends of S need to be the end points of T . (b) The closest

minimal tangle from e1 and e2 must be the same. (c) e1 and e2 are not

connected in this minimal tangle.
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from G and putting it into the top of TangleList, and repeat

the process iteratively until the whole tangle is untangled.

When untangling a subtangle, we record its type (either of

BB, AB, BA, AA). If it is different from that of the

previous subtangle, we can say that the twist direction has

switched too. Otherwise, the subtangles will be merged.

This merging operation is the same as concatenating the

rational tangles.
If no subtangle that satisfies conditions 1 and 2 is found,

T is not a rational tangle. In that case, we do not use this

tangle to evaluate the similarity. The process of encoding

the tangle information is summarized in Algorithm 1.

Algorithm 1. Encoding the tangle information

Put all subtangles in G

while G is not empty do

Pick out the subtangle S in G that satisfies

condition 1 and 2

if S ¼ NIL then

T is not a rational tangle. Exit()
end if

Check the two ends of S and set S:type.

if TangleList is empty then

S:twist ¼ H
else

if S:type! ¼ Sp:type then

S:twist ¼ !Sp:twist

else

merge S and Sp and define it as S

S:twist ¼ Sp:twist
S:type ¼ Sp:type

end if

end if

Sp ¼ S
Add S into TangleList

end while

Two examples of tangles encoded by this method are

shown in Fig. 16. Whether the two tangles are the same or

not can be checked by comparing their TangleLists. The

details are explained in the next subsection.

3.5 Computing Similarities by Topological
Relationships

Given two different sets of postures where the two

characters are tangled with another, we compute the

similarities of the postures/movements by using the
encoded tangle information.

As shown in Fig. 5, there are 10 paths connecting every
pair of end effectors in the articulated structure we use in
the system. Therefore, there are 10� 10 ¼ 100 pairs of paths
formed between two characters. For every pair of paths, the
system builds the TangleList structure, in which all the
subtangle information is saved.

In order to compare the similarity between the pairs of
postures, we have prepared two distance functions accord-
ing to the application. Suppose we have two pairs of
postures: the first pair is defined by u and the other by v.
Each pair of postures has 100 TangleLists, each of which
represents how the paths between the end effectors
are tangled.

In the first distance function, we evaluate the overall
topological similarity between two pose pairs, which will be
useful for managing a database of human motions. This is
done by accumulating the distance between the correspond-
ing TangleLists in u and v

d ¼
X100

i¼1

distðTangleListui ; TangleListvi Þ; ð5Þ

where i is the index of path pairs, TangleListui and
TangleListvi are the ith TangleList in u and v, respectively,
and distðÞ is a function that computes the distance between
two TangleLists. The distance between TangleLists is
computed by finding the matching subtangles in the two
TangleLists and comparing their GLI values. When match-
ing a subtangle, we use a method similar to dynamic time
warping: if the lth subtangle of TangleList 1 is matched with
the kth subtangle of TangleList 2, subtangles of TangleList 1
whose index are larger than the l cannot be matched with
subtangles of TangleList 2 whose index is smaller than k

distðTangleListui ; TangleListvi Þ
¼ min

ju
l
;jv
l

X
k¼1

ðTangleListui ½juk �GLI � TangleListvi ½jvk�GLIÞ
2

þ P;
ð6Þ

where 0 < ju1 < � � � < nu;i, 0 < jv1 < � � � < nv;i, nu;i and nv;i are
the number of subtangles in TangleListui and TangleListvi ,
respectively, and P is the sum of squares of the GLI of the
subtangles in TangleListu and TangleListv which could not
find a matching subtangle.

The second distance function is used to judge whether
postures and motions can be interpolated or blended
without interpenetrations of the segments. For such an
application, it is more meaningful to evaluate the maximum
GLI difference rather than accumulating the difference of
GLI for all the combination of paths

blendableðTangleListui ; TangleListvi Þ
¼ max

k
ðmin
ju
l
;jv
l

jTangleListui ½juk �GLI � TangleListvi ½jvk�GLIjÞ:

ð7Þ

We can estimate that when blendableðÞ returns a value larger
than 0.5, it is unlikely that the postures can be linearly
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Fig. 16. Examples of encoding rational tangles. The encoded TangleList

is shown on the bottom.
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interpolated without penetration, as some parts of the body
need to be tangled/untangled.

4 EXPERIMENTAL RESULTS

The results of computing the similarities of posture pairs
based on the topological relationships are presented in this
section. We also show examples of interpolating/concate-
nating different motion clips by using topological relation-
ships as a measure.

4.1 Comparison between Topological
and Euclidean Distance

We first compared the performance of the distance metrics
of (6) which is based on topological relationship, and that
based on Euclidean distance, to distinguish posture pairs
which are semantically similar/dissimilar. Fifty eight
posture pairs which can be divided into the following
10 categories were prepared:

1. Full Nelson holds (motions 1-8),
2. back holds (9-11),

3. firefighter carries (12-15),
4. backbreakers (16-22),
5. octopus holds (23-25),
6. one person carries (26-32),
7. piggy back carries (33-36),
8. walk support (37-39),
9. dancing (40-49),
10. Latin dance (50-58).

We computed the normalized similarities between the

postures, whose values are between 0 (less similar) and 1

(highly similar) by using both the topological and Euclidean

distance metrics. They are computed by 1� d=dmax, where d

is the distance between the posture pairs and dmax is the

maximum distance found among all the pair postures used

in this research. For the Euclidean distance, we used the

point cloud metric proposed by Kovar et al. [4].
The results are visualized in Fig. 17. The darker areas

represent higher similarity and the lighter areas represent

lower similarity. The postures of the same kind are grouped

together along the row/columns.
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Fig. 17. A similarity matrix of different postures based on (a) topological relationships and (b) Euclidean distance computed by Kovar et al.’s point

cloud metric [4].
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It can be observed that in the similarity matrix based on
the topology, the distances between postures in the same
group of actions are small. On the other hand, that does not
necessarily apply to the results based on the Euclidean
distance. For example, when using the topological dis-
tances, it can be observed that all the motions in the
category of Full Nelson holds, back holds, and firefighter
carries are evaluated as similar, while there are significant
variations when using Euclidean distances.

In some categories, the topological relationships between
the characters are different. These postures are 20, 21, and
22 in backbreakers, 25 in octopus holds, 28-32 in one person
carries, and 36 in piggy back carries. Therefore, their
topological distances from the other motions in the same
category are relatively large. However, in some cases, the
Euclidean distance between such postures with other
postures in the same category are small because the
positions of the joints are similar. This happens at posture
26 in octopus hold; although the Euclidean distance with
the other postures are small, its topological relationship is
actually different.

The dancing postures (40-49) are composed of three
groups. In the first group (40-42, Fig. 18a), the white
character is holding the torso of the black character and the
black character is holding the neck of the white character.
These postures are topologically equivalent to those of the
walk assisting motion (37-39). In the second group (43-47,
Fig. 18b), the white character is holding the torso of the
other and the third group of postures is same as that of the
first group, but the role of the two characters are switched
(43-47, Fig. 18c). The proposed method can differentiate the
postures correctly, as shown in Fig. 17a.

In all the Latin dance postures (50-58), the left arm of the
white character is tangled with the torso of the black character.
In addition to that, the black character’s two arms (50,
Fig. 19a), left arm (51, Fig. 19b) or right arm (52-58, Fig. 19c),
are tangled with the neck of the white character. In posture 57-
58, there is an additional tangle between the white character’s
left arm and the black character’s right leg (Fig. 19d).
Although the postures in the same group are topologically
equivalent, they are kinematically dissimilar. It is difficult to
classify them in the kinematic framework, as shown in
Fig. 17b. Since the white character’s right arm is tangled with
the torso of the black character and the left arm of the black
character is tangled with the neck of the white character in
most of the dancing and Latin dance postures, the topological
similarity of these postures are large, and as a result, a large
gray area exists in the similarity matrix in Fig. 17a. Such
topological similarity cannot be detected by Euclidean

distance, and there is no consistency in the corresponding
region of the similarity matrix shown in Fig. 17b.

In the similarity matrix computed by Euclidean dis-
tances, it can be observed that the variance of the similarity
is large whether the postures are in the same or different
groups. The large variance within the same group implies
that the similarity is largely dependent on the kinematics
and can result in inconsistencies. There is a lot of risk that it
treats semantically different postures as similar and
semantically similar postures as different. On the other
hand, in the similarity matrix computed by topology
distance, the variance is low. In some cases, the topology
distance returns false positive results. For example, a gray
area exists in 50-57 � 38-47 of the topology distance-based
matrix. This is simply because these groups are topologi-
cally similar. The low variance suggests the consistency
inside the same group and is not affected by the kinematics
of the postures.

4.2 Content-Based Retrieval

Next, an experiment of content-based retrieval was done.
The example postures were given as queries and the results
together with the numerical similarity of each pair were
computed and returned to the user.

Some of the results are shown in Figs. 2 and 20. The
similarities of the postures are computed by (6). It can be
observed that postures with similar topological relation-
ships are at the top of the lists.

4.3 Creating Animations by Motion Graphs

Third, Motion Graphs [2], [3], [4] were created based on two
sets of posture/motion data—one set on wrestling (Group A,
Fig. 21) and the other on dancing (Group B, Fig. 22)—and we
evaluated the animations created based on these Motion
Graphs.

In Motion Graphs, the nodes represent postures and
edges represent transition motions between the postures.
They can be produced by comparing the distance between
every posture of the captured motion data and connecting
nodes by edges whose distances are below a given thresh-
old. Here we created small-scale Motion Graphs using the
postures in Section 4.1 and some additional short motion
clips. We calculated the distance between all the postures
and also the initial/final postures of the short motion clips,
and connected the postures by edges if the distance was
smaller than a threshold.

Three different methods were used to create the graphs
and the results were compared. Firstly, we used the point-
cloud distance metric in [4] to compose the graph. Secondly,
we used the topological distance of (7) explained in
Section 3.5 to compose the graph. This is because we want
to find out whether the two postures can be blended or not
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Fig. 19. The representative postures of the Latin dance motions (50, 51,

52, 57).Fig. 18. The representative postures of the three groups of dancing

motions (42, 43, 48).
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rather than finding out the overall topological similarity of

the two posture pairs. We had tightened the threshold to

0.45, which is slightly below 0.5 to reduce the risk of inter-

penetrations of the segments. Finally, we used a 2-pass

method which first filters out postures whose topological

relationships are too different and then compares the

closeness based on the point-cloud metric.
The statistics of the Motion Graphs created based on the

postures/motions of Groups A and B are shown in Tables 1

and 2, respectively. In the tables, invalid edges refer to the

edges (transition motions) causing the bodies to intersect/

penetrate each other. By using the point-cloud metric alone,

a lot of invalid edges were found as many postures within

each group are numerically similar, although their topolo-

gical relationships are different. These apply to postures

shown in Figs. 21b and 21d, for example.

By using the topological distance alone, the number of
invalid edges is reduced significantly. Since only topologi-
cal distance is compared, some of the edges are connecting
two numerically dissimilar postures. We found that most of
these edges are valid edges. However, blending numeri-
cally dissimilar postures is not preferred in Motion Graphs
since discontinued motions will be created. The risk of
intersecting/penetrating will also rise as the bodies need to
move a lot when interpolating the postures.

By using the 2-pass method, we only connected the
postures whose point-cloud and topological distances are
both small; as a result, no invalid edges are found. This
implies that taking into account the topological distance
between the postures is very useful in motion blending and
concatenation, especially when the motion database con-
tains a lot of motions whose topology is different.

The resulting motions created from the Motion Graphs

composed using the point cloud metric and the 2-pass

method are included in the attachment video, which can be
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Fig. 22. The dancing postures/motions in Group B.

Fig. 20. Results of content-based retrieval based on the topological relationships. Despite the large variation of the postures, the pairs of postures

with similar topological relationships return high scores.

Fig. 21. The Full Nelson hold and Rear Chokehold postures/motions in

Group A.

TABLE 1
Statistics of the Motion Graph Based on

Wrestling Postures/Motions

TABLE 2
Statistics of the Motion Graph Based on

the Dancing Postures/Motions
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found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2008.199.

4.4 Creating Animations by Concatenating
Motion Clips

Finally, we used topological distance as a measure to
evaluate whether motion clips can be concatenated or not.
Three motion clips were prepared:

1. a person giving a shoulder to assist the walk of
another (Fig. 23a);

2. a person doing a one-person arm carry to another
(Fig. 23b);

3. a person conducting a back drop to another
(Fig. 23c).

First, we computed the TangleLists of the two bodies at
every frame of the motion clips. Based on the topological
relationship, the walking motion and the carrying motion
are divided into three stages, and the backdrop motion is
divided into two stages. By comparing the TangleLists of
every frame between the motions, it was found that the
topological relationship at the third stage of the walking
motion and at the first stage of the carry and backdrop
motion are the same. We have further found the best frame
to concatenate the walking motion and the carry motion,

and the walking motion and the backdrop motion. By
comparing the Euclidean distance of the joints, the smooth
transitions from the walking motion to the carry motion and
the walking motion to the backdrop motion were achieved.
The readers are referred to the attachment video to see the
resulting motions.

5 DISCUSSIONS AND CONCLUSIONS

In this paper, we have proposed a new method to index
postures of two characters closely interacting with each
other. The method is based on the theory of rational tangles,
and it is shown that we can categorize various postures of
two characters tangled with each other. We have also
shown that a base line method using low-level attributes
such as the position of the joints can suffer from categoriz-
ing such postures.

We have limited the tangles made between the segments
to rational tangles. There are also different categories of
tangles called self-knotted tangles and prime tangles. Such
tangles have more complex structures and there is still no
invariant known for them.

Regarding prime tangles, usually there are other rational
tangles sharing the subtangles with them. Our system then
encodes such rational tangles and uses them to distinguish
the postures. As a result, by simply excluding the prime
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Fig. 23. The matching stages of the assist-walking motion, the backdrop motion, and the lifting motion.
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tangles from considerations, we can compute the simila-
rities of the pairs of postures by using the TangleLists of the
rational tangles. Such an example can be found in Fig. 24a.
The paths connecting the hands are forming a prime tangle
equivalent to that in Fig. 4c. Although our method cannot
index this tangle, other paths such as hand-foot get indexed
as rational tangles. By comparing such paths, the system
can successfully index this posture pair.

Regarding self-knotted tangles, because the human body
is composed of a limited number of rigid segments, there
are not so many self-knotted tangles that can be composed.
One example of such posture is to hold the arms, as shown
in Fig. 24b. As the main idea of this paper is to index the
relationship of multiple characters, we did not provide
solutions for such postures. One way to handle them is to
compute the tangles made within the body by checking the
GLI matrix of paths within the body. Actually, if we
generate a GLI matrix of the left and right arms in the
posture shown in Fig. 24b, a rational tangle of a single twist
will be detected.

In the experimental results, we have shown several
examples concatenating different motion clips by using
Motion Graphs [2], [3], [4]. By comparing different distance
metrics, the results clearly showed that using topological
distance as a measure can reduce the number of collisions or
penetrations in the blended motions. However, there are
problems when interpolating topologically similar but
kinematically dissimilar postures. For example, the location
of the supporting feet can be quite different, which makes the
resulting motions discontinuous and unnatural. By combin-
ing the topological and Euclidean distance metrics, the
blended motions are free from collisions or penetrations,
while the visual quality (in terms of continuity of the motions)
is comparable to those created by conventional Motion
Graphs. Taking into account the topological distance helps
to generate collision-free motions automatically, especially
when the motion database contains motions in which
multiple characters closely interact with each other.

We mainly conducted experiments at the posture level
instead of the motion level. It is straightforward to extend
this concept to the motion level where the topological
relationships change over time. As explained in Section 4.4,
we can segment the motion at the postures where the
topological relationship changes, and index or retrieve the
motions using a sequence of topological relationships.

We proposed to encode the tangles made between the
global paths connecting the end effectors; another approach
to encode the tangles is to compute the local GLI between

shorter paths such as those made by the limbs. Such an

approach might be more efficient as we will only need to

encode the local area where the tangles are composed.

However, a drawback is that another approach to estimate

the similarities of postures which are composed of different

segments will be required. For example, the two postures in

Fig. 6 are composed of different segments, although they

should be considered similar. As our method is based on

the topological relationship of global paths, such postures

are treated as equivalent. We can further compare the

details by comparing the kinematical difference.
As a future work, one interesting approach is to use a

hierarchical method in which the global similarities are

first evaluated by global tangles and then the further

details are compared by local tangles. Another interesting

topic is to explore methods to interpolate postures based

on the topology rather than interpolating the generalized

coordinates.

APPENDIX: GLI OF LINE SEGMENTS

In this research, we assume that the two strands are

represented by a chain of line segments. Suppose there

are two serial chains C1; C2 composed of n1 and n2 line

segments. The GLI of the two chains C1; C2 can be

computed by

GLIðC1; C2Þ ¼
Xn1

i¼1

Xn2

j¼1

Ti;j; ð8Þ

where Ti;j is the Gauss Linking Integrals of two line

segments i and j. Ti;j can be computed as follows [27]:

Suppose points a; b and c; d are the end points of segments i

and j, respectively. Let us define the vectors connecting

a-b, a-c, a-d, b-c, b-d, and c-d by rab; rac; rad; rbc; rbd; rcd,

respectively (Fig. 25). Using these vectors, the normal

vectors of the tetrahedron made by these four points can

be calculated by

na ¼
rac � rad
krac � radk

; nb ¼
rad � rbd
krad � rbdk

;

nc ¼
rbd � rbc
krbd � rbck

; nd ¼
rbc � rac
krbc � rack

:

Finally, Ti;j is calculated by

Ti;j ¼ arcsinðnanbÞ þ arcsinðnbncÞ þ arcsinðncndÞ
þ arcsinðndnaÞ:
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Fig. 25. The tetrahedron composed by two line segments a-b and c-d.

Fig. 24. Postures with: (a) prime tangle (b) self tangle.
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